New process to <span style='color:red'>3D print</span> graphene developed
  Researchers from Virginia Tech and Lawrence Livermore National Laboratory have developed an innovative method to 3D print graphene, which until now has only been available in 2D sheets or basic structures.  According to engineers at Virginia Tech, they have been able to 3D print graphene objects at a resolution and an order of magnitude greater than ever before, unlocking the ability to, in theory, create any size or shape of graphene.  Graphene is extremely strong and has high thermal and electricity conductivity. 3D printed graphene objects would be welcomed by a number of industries, including batteries, aerospace, separation, heat management, sensors, and catalysis.  A single layer of carbon atoms organised in a hexagonal lattice, when graphene sheets are neatly stacked on top of each other and formed into a three-dimensional shape, it becomes graphite. Because graphite is simply packed-together graphene, it has fairly poor mechanical properties. But if the graphene sheets are separated with air-filled pores, the three-dimensional structure can maintain its properties. This porous graphene structure is called a graphene aerogel.  "Now a designer can design three-dimensional topology comprised of interconnected graphene sheets," said Xiaoyu "Rayne" Zheng, assistant professor with the Department of Mechanical Engineering in the College of Engineering and director of the Advanced Manufacturing and Metamaterials Lab. "This new design and manufacturing freedom will lead to optimisation of strength, conductivity, mass transport, strength, and weight density that are not achievable in graphene aerogels."  Zheng, also an affiliated faculty member of the Macromolecules Innovation Institute, has received grants to study nanoscale materials and scale them up to lightweight and functional materials for applications in aerospace, automobiles, and batteries.  Researchers have printed graphene using an extrusion process, but that technique could only create simple objects.  "With that technique, there's very limited structures you can create because there's no support and the resolution is quite limited, so you can't get freeform factors," Zheng explained. "What we did was to get these graphene layers to be architected into any shape that you want with high resolution."  To create these complex structures graphene oxide sheets, a precursor to graphene, is crosslinked to form a porous hydrogel. Breaking the graphene oxide hydrogel with ultrasound and adding light-sensitive acrylate polymers, micro-stereolithography is used to create a solid 3D structure with the graphene oxide trapped in the long, rigid chains of acrylate polymer. The 3D structure is then placed in a furnace to burn off the polymers and fuse the object together, leaving behind a pure and lightweight graphene aerogel.  "We've been able to show you can make a complex, three-dimensional architecture of graphene while still preserving some of its intrinsic prime properties," Zheng said. "Usually when you try to 3D print graphene or scale up, you lose most of their lucrative mechanical properties found in its single sheet form."
Key word:
Release time:2018-09-18 00:00 reading:2121 Continue reading>>

Turn to

/ 1

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.